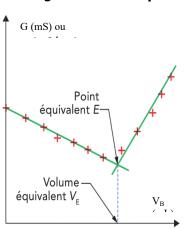
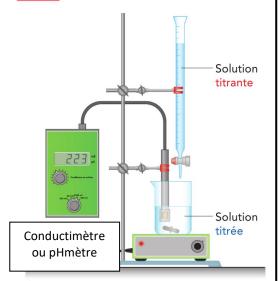
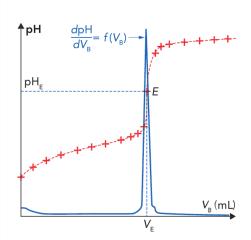

CHAPITRE 18: CONTROLE DE LA QUALITÉ PAR DOSAGE (p463 à 485)

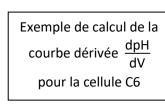


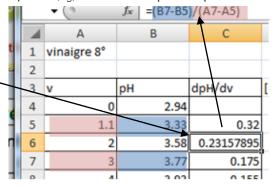

Titrage pH-métrique:

Titrage conductimétrique:



Doc. 2 Montage utilisé


Doc. 3 Méthode la courbe dérivée


 $V_{\rm B}$ (mL)

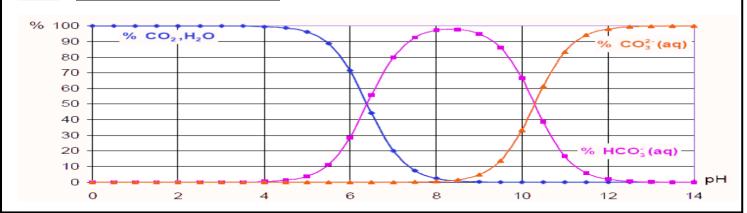
À partir des points expérimentaux, un logiciel de traitement de données *d*pH permet de tracer le graphe - $= f(V_{\rm B}).$

Ce graphe présente un extremum pour une abscisse égale au volume équivalent V_E. Le point d'intersection entre la droite verticale passant par l'extremum et la courbe pH = $f(V_B)$ détermine le point équivalent E.

Couples acido-basiques

Les couples acido-basiques pouvant être mis en jeu durant ces dosages, sont les suivants :

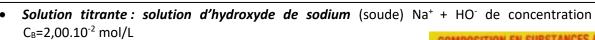
 $C_6H_8O_6 / C_6H_7O_6^-$


 H_3O^+ / H_2O

H₂O / HO⁻

 $CO_2, H_2O / HCO_3^-$

 HCO_3^- / CO_3^{2-}


Diagramme de distributivité Doc. 5

1. DOSAGE PHMÉTRIQUE DE L'ACIDE ASCORBIQUE

La vitamine C (ou acide ascorbique $C_6H_8O_6$) est une vitamine hydrosoluble, sensible à la chaleur et à la lumière. Elle joue un rôle important dans le métabolisme des êtres humains et de nombreux autres mammifères. Vous devez vérifier l'information concernant la masse de vitamine C présente dans un comprimé.

Donnée: $M(acide \ ascorbique)=176 \ g/mol$

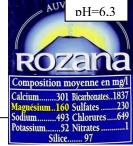
Solution titrée : solution S d'acide ascorbique

COMPOSITION EN SUBSTANCES ACTIVES Acide ascorbique: 500,00 mg dont 285,00 mg d'ascorbate de sodium. Excipients q.s.p. un comprimé à croquer.

500 mg

- <u>Préparation :</u>Broyer finement le comprimé dans le mortier à l'aide d'un pilon.
- Verser la poudre dans une fiole jaugée de volume 50,0 mL munie d'un entonnoir en s'aidant d'une spatule.
- Rincer le mortier avec de l'eau et récupérer les eaux de rinçage dans la fiole jaugée.
- Ajuster au trait de jauge après dissolution complète du comprimé

<u>Prise d'essai</u>: Prélever un volume V_A=10,0 mL à l'aide d'une pipette jaugée, de la solution précédente, que l'on place dans un bécher de 150 mL. On ajoutera de l'eau déminéralisée à cette solution pour immerger correctement la sonde pHmétrique et éviter que le barreau aimanté ne tape sur la sonde.


- Déroulement du dosage :
 - Faire les mesures nécessaires de manière à tracer à l'aide d'Excel, le graphique pH = f(V_B). « Resserrer » les mesures autour du pH à l'équivalence.
 - Rajouter une colonne pour calculer la courbe dérivée $\frac{dpH}{dV}$ et tracer le graphique $\frac{dpH}{dV}$ = f(V_B)
- Faire un schéma de ce montage. Quels sont les réactifs de ce dosage ? En déduire les couples acide/base et l'équation chimique du dosage sachant que cette réaction est totale.
- Par la méthode des tangentes et celle de la courbe dérivée, déterminer graphiquement le volume équivalent VBE
- a. En exploitant vos réponses précédentes, déterminer la concentration en acide ascorbique dans la solution S.
 - b. En déduire la masse d'acide ascorbique présente dans le comprimé. Conclure.

2 . DOSAGE CONDUCTIMÉTRIQUE DE L'ION HYDROGÉNOCARBONATE

L'ion hydrogénocarbonate HCO_3^- (appelé bicarbonate) a toujours été utilisé pour combattre l'acidité. Il facilite la digestion et aide à réguler le pH d'un estomac trop acide. Par ailleurs, les sportifs boivent des eaux bicarbonatées, pour diminuer l'acidité de l'organisme lié à la production d'acide lactique.

Vous devez vérifier l'information délivrée par l'étiquette d'une bouteille d'eau minérale Rozana

**Donnée: M(ion hydrogénocarbonate)=61,0 g/mol

- Solution titrante: solution d'acide chlorhydrique $H_3O^+ + Cl^-$ de concentration $C_A=5,00.10^{-2} \text{ mol/L}$
- Solution titrée : solution d'eau minérale

<u>Prise d'essai</u>: Prélever un volume V_B=20,0 mL à l'aide d'une pipette jaugée, d'eau minérale, que l'on place dans un bécher de 150 mL. On ajoutera de l'eau déminéralisée à cette solution pour immerger correctement la sonde conductimétrique et éviter que le barreau aimanté ne tape sur la sonde.

- Déroulement du dosage :
 - Placer le conductimètre sur le calibre 20 mS
 - Faire les mesures nécessaires de manière à tracer à l'aide d'Excel, le graphique G = f(V_A)
- Faire un schéma de ce montage. Quels sont les réactifs de ce dosage? En déduire les couples acide/base et l'équation chimique du dosage sachant que cette réaction est totale.
- En exploitant votre courbe, déterminer graphiquement le volume équivalent V_{AE}
- a. En exploitant vos réponses précédentes, déterminer la concentration en ion hydrogénocarbonate dans l'eau minérale.
 - b. En déduire la masse d'in hydrogénocarbonate présent dans 1L d'eau. Votre résultat confirme-t-il cette information ? Faire un calcul d'erreur.
 - c. En s'appuyant sur le document 5, quelle(s) sont le(s) espèce(s) chimique(s) prédominante(s) dans votre eau minérale ? Justifier.
 - d. Déterminer également les pKa des 2 couples acido-basiques faisant intervenir l'ion hydrogénocarbonate. Expliquer votre démarche.